S ORINWARIE
MOOESINOIBES

Editorial

WHILST THE “commercial” computing sector is experiencing a lot of
innovation with new techniques and ‘““fourth generation” languages, the
“technical” computing field seems largely unaware of how it might refine its
methodologies, be more productive and provide a more satisfying type of
work for the practitioners involved.

The Bell Laboratories Unix™ operating system and its derivatives, in
particular the Software Tools methodology, based on the book of the same
name by Kernighan and Plauger, is increasingly a guiding direction in
technical computing. Its adoption leads progressively towards machine
independent, highly readable and maintainable code.

As our experience with Software Tools has grown and we have met others
interested in this field and have had to communicate the philosophies and
methods of Software Tools to them, the idea has kept recurring that some
sort of regular publication discussing this area would be worthwhile.

Consequently, we have decided to publish this newsletter four times per
year. Typesetting and printing are not cheap nowadays. so we have to ask for
a subscription fee to cover production costs.

In the technical field, development and main<enance of code often rests
with people having a minimum of programming training. The highly
secretive and competitive approach widespread in the computer industry,
acts to promote ignorance and confusion regarding improved programming
methodoligies. We now live in an age of rapid technological change in
computing hardware, with software flexibility and portability being
increasingly important in ensuring continuity of service. Seldom are issues
in programming discussed in a straightforward and down to earth way, and
this severely limits opportunities for programmer education. (The efforts of
some of the Bell Laboratories people and those that have followed in their
footsteps are an encouraging stand for a common sense approach.)

To us, one of the most appealing things about Unix and Software Tools is
the educational aspect. We see these methods as an opportunity to refine our
practice of computer programming by learning from the examples of others
and by constant experimentation of our .own.

EDITORIAL

This first issue necessarily leans heavily on our own contributions, but we
hope that in time it will come to reflect the efforts of others following these
approaches in Australia. We therefore invite contributions in the form of
articles or short communications or letters to the editor, with the emphasis
on practical experience or the relevance of theoretical matters to practical
experience.

Please let us know if you have any suggestions for what could be covered
in forthcoming issues. (We have included a list of our own on the inside back
cover.) The main reason for publishing Softrware Tools Notes is to provide
information which will be genuinely useful to programmers, engineers and
scientists and make them aware of new approaches that they can adopt and
benefit from immediately.

We would be willing to act as a clearing house for the distribution of the
standard Software Tools Users Group tapes in Australia if this is a useful
service. It is to be noted that the current distribution tape includes a
Cookbook for installing Software Tools on a new system as well as a User
Manual that documents all tools and subroutines.

* * *

Recommended Literature

For readers who are unfamiliar with the history of the Software Tools
system, here are some standard references:

Software Tools, by B.W. Kernighan and P.J. Plauger, published by
Addison-Wesley, 1976.

Software T'ools in Pascal, by B.W. Kernighan and P.]J. Plauger, published
by Addison-Wesley, 1981.

Software Tools Communications, published by the Software Tools User
Group, 1259 El Camino Real, #242, Menlo Park, California 94025, U.S.A.

Ratfor — A Preprocessor for a Rational Fortran, by B.W. Kernighan,
Software Practice and Experience, Volume 5, 1975.

The Unix Programming Environment, by B.W. Kernighan and J.R.
Mashey, Software Practice and Experience, Volume 9, 1979.

Poetic Programming

Dr Desmond FitzGerald

THE OXFORD DICTIONARY defines the term poetry as the expression of
beautiful or elevated thought, imagination or feelings, in appropriate
language. Poetry is usually succinct but adequate, sometimes hiding all its
meanings until pushed by the intellect. I believe with programming that
there should always be a motivation towards the poetic.

Programs and programming methods are generally not the products of
any higher guiding philosophy than getting the job done in the guickest
possible time. There is little reflection on what and how things were done
yesterday with a view to improving productivity tommorrow. This limited
approach to improving the working environment means that programmers
meet constraints that curtail their ability to grapple with real and complex
systems.

The concept of poetic programming can extend beyond isolated utility
and/or application programs into the entire user environment — forming a
co-operating set of tools. In general, most environments are not of this ideal
nature.

Human Beings and Their Potential for Programming

There are many failings or constraints that seem to crop up in programming
that limit the amount and scope of work that can effectively be achieved.
Among the constraints are

1 A maximum three to five hour concentrated burst of effort is the limit
of most people’s capability.

2 A distracted environment amounts to little real work being possible. A
poor computing environment leads to frustration and distraction.
Happy and harmonious surroundings are essential for productive
work.

POETIC PROGRAMMING

Lack of a meaningful goal causes a lack of motivation. Even with a
worthy goal, lack of recognizable progress towards that goal causes
difficulties. This general question of motivation is one of the more
difficult areas to manage in a working environment.

Humans do not think in a logical sense at a very {great speed. One good
creative and intuitive idea may take a day or two of working and
reworking at the logical level to form a workable framework.

The characteristic of the human mind of failing to comprehend
increasing volumes of logic can become a major constraint. As an
example of this, it is often acknowledged that the sheer volume of code
in most operating systems makes it impossible for one person to at any
one time be able to keep on top of the code. It is suggested that a limit of
about five to seven competing factors is all that can be coped with at any
one time.

Being attached to a way of working can be very counterproductive.
Programmers often need to co-operate to achieve a goal and silly
personal quirks do not help.

It can be seen that HUMANS have some very real problems and

shortcomings when the task of programming is being considered.

Artificial Intelligence and Expert Systems

The case for establishing and maintaining high programming (coding)

standards is made much stronger by looking to the future of programming.
While not suggesting that programming as it is now known will become an
obsolete profession, it seems likely that

1

Computers are going to take over more of the hum-drum lower level
programming. Programmers will be using more abstract and concise
methods.

Expert Systems will be developed that can accept input to a project from
diverse sources and produce an integrated and consistent system. This
process can be likened to a person reading a programming text and
making very reasonable deductions about the code and the purpose of
it without ever formally knowing the rules of the languages.

Good coding techniques now are an investment for the future. The

quality of present thought ought to be preservable and translatable at quite
an abstract level by future generations of expert system software. Poor
software will be scrapped.

POETIC PROGRAMMING

Making the Most of Personal Creativity

One or two people always give the creative insight and input into a well
integrated system. The oft quoted “1% inspiration, 99% perspiration”
applies very much to programming. While remaining in inspiration-mode is
often an aspiration, we are mostly involved in hack-work.

Having painted this picture of where things stand, are there any elegant
ways of coping with the 99% of time in programming that we are doing fairly
mechanical work in perspiration-mode?

Learning from Other Disciplines

It should be generally recognized that some of the time honoured
engineering principles of design are equally applicable in programming
(hence the term Software Engineering).

Some basic engineering design tenets are

Modularity of components.
2 Starting from a broad over-view design.

Adopt a policy of early prototyping and testing with subsequent
refinements.

4 Coming to some agreed standards for the manufacture and use of
commonly used components.

On this last point, we can make an analogy between programming
computers and designing cars. The car industry by now uses standardized
parts, optimized for form, function and robustness. Attention is paid to
efficiency — minimizing energy usage. Care is also put into the car’s
appearance. Cars have standardized user interfaces. The brake, clutch
accelerator and steering wheel are positioned uniformly and respond in a
standard manner. Very few of these attributes apply in most computing
environments.

Speed of Thought

If you can work somewhere near to the speed of your thoughts at a
computer terminal, getting good turnaround on each module or group of
modules that you write, then you can conceive of and debug a great deal of
code in a very short time. This amounts to individual programmer
productivity that is a hundred times the “norm”. A three to five hour
productive session can then achieve a major development. The “system”
must not impinge and interfere with the thought process. It ought to remain

POETIC PROGRAMMING

in the background of consciousness. Working at or near the speed of thought
keeps a project moving and motivation high. It encourages revision and
refinement of ideas since changes will not take very long to implement. As an
example, the Prime Source Level Debugger deserves high praise in being a
tool that really helps in this area. \

Being Smart vs Being Readable

It has been found that being overly clever and/or obscure in
programming is basically non-productive in the long term. Even the person
who wrote the code can be quite mystified as to how it works after six
months or more. There is always a simpler way of expressing the algorithm
or data construct. If a mutual review of on-going work is followed, the
benefits are great and there is an added stimulus towards improving existing
code.
Some of the more common problems in this general catagory are

1 Avoid the confusing use of temporary variables.

2 Do not use ““tricks” which are dependent on your private knowledge of
a particular machine.

3 Consistent indenting around control flow statements, uniform spacing
around operators and a common style of comments should be followed.

4 Keep internal documentation up to date. A well written program
should be almost self-documenting (even without the use of
comments). Additional documentation should not repeat what is
obvious.

Development of Tools and Languages

The fact of experience is that Fortran will remain the bread and butter of
technical computing. A good case can be made to leave Fortran alone and to
develop preprocessor techniques to aid in the more succinct and abstract

statement of the logic required.
The Software Tools method with its associated libraries and utilities can

make a very big impact on a user environment and personal productivity.
Standardized library calls can be made available which give the application
programmer a very dense fabric of programming support. It is possible to
liken this support to standard “sub-assemblies” of parts. With a few lines of
initialization and the appropriate library calls, the programmer can call on
some very powerful workhorses.

Using a Preprocessor in Large
Technical Applications

A Case Study

Dr Desmond FitzGerald and Paul Howson

PRIOR TO 1980, our main background had been in technical software —
mainly for the mining industry. The engineering profession (at least here in
Australia) is not exactly a torch bearer in innovative software methodology
and most programmers working in an engineering environment follow
software methods and philosophies of the sixties. Our engineering software
was written in Fortran IV.

For a beginner, struggling with the complexities of Fortran (writing an
engineering program) from the ground up can be exciting. But you can soon
find yourself sitting at the keyboard tackling programming tasks which seem
familiar. These tasks can seem similar to something you’ve done before, or
that somebody else has done before, but they are not really what is wanted
for the current project. How nice to be able to start with something that’s
already written and use parts from it for the new project.

Three years ago, we came in contact with ““Software Tools” — through
reading the original text by Kernighan and Plauger. At that time we
procured the tape from Addison-Wesley here in Australia and commenced
the gradual implementation of some of the more useful utilities on a Prime
400 system. These early attempts at implementing the utilities were rather
crude, for at that stage we knew little about the Software Tools
programming environment and did not fully understand its usefulness. So
Ratfor was relegated to the back seat.

Around the same time we began to write applications software using
Fortran 77. The coming of Fortran 77 probably kindled an interest in
programming standards and software portability, for by this time we had
begun the first of a series of programs for one of Australia’s largest and oldest
underground mines, situated at Broken Hill in central New South Wales.

USING PREPROCESSORS - A CASE STUDY

Initially a geological database system had to be developed on a Prime
machine for end use on a Perkin-Elmer machine, and the problems of
portability began to rear their ugly heads. On this project there was some
finger burning — and it drove home the lesson that attention to issues of
software standards was important. b

As our experience of Fortran 77 grew, we found that despite the fact that
Fortran 77 had cleaned up Fortran a great deal, it still lacked good looping
constructs, a flexible compile-time symbol substitution facility and had rigid
formatting requirements. We found ourselves re-examining Ratfor and
became convinced that Fortran 77 could benefit from preprocessing just as
Fortran IV had done.

We then began a data entry program for 3D mine models, writing in
Ratfor, but using the Fortran 77 character data type for characters (rather
than integers). This unorthodox flavour of Ratfor was termed Rat77.
(Actually no change was necessary to the Ratfor preprocessor itself. All the
character declaration and handling fell into the category of Ratfor’s:
LEXOTHER statement class and passed straight through into Fortran).

One of the advantages of using Fortran 77 characters was that suddenly
quoted strings became scalar constants of character type and the division in
Ratfor between guored strings (or Hollerith strings) and character variables
disappeared — they became compatible. The remark primitive was not
required to output quoted strings since putlin did the same job, more or less.

Duplicate versions of all the software tools libraries were made using hand
translations into the Fortran 77 character type. In retrospect, maintaining
duplicate libraries has been very troublesome. '

When we delivered the first application program written in Rat77 in July
1981, there was not unexpectedly, hesitation expressed by some of the staff
at the mine. They felt that Ratfor was an unnecessary complication and that
any programming task could be satisfactorily handled in Fortran. Of course,
they were right inasmuch as it is possible to do any programming task in
Fortran.

There are aesthetic and pragmatic reasons for using Ratfor and a Software
Tools environment. These are that Ratfor looks good, is much terser than
Fortran, and is much easier to maintain and develop for complex systems.

Within the last year, several more large mining application programs have
been written in Rat77. These include (i) a line assay and entry system;
(i) an on-line data acquisition system; and (iii) an ore-reserves package
(containing a simple relational database system).

USING PREPROCESSORS - A CASE STUDY

WHAT HAVE WE LEARNED from this experience with Ratfor and Software
Tools?

We have found that Ratfor’s concise control constructs and compile time
symbol substitution (macro processor) encourage the writing of code which
is parameterized allowing a more generalized expression of an algorithm that
the equivalent Fortran code.

Ratfor’s existing base of software tools has provided examples of modular
programming where each distinct job in a program is handled by a separate
procedure. By programming in this way, you soon build up a collection of
useful, generalized procedures. Such procedures are zools and in time can be
built into a library. When documented properly, these can be passed on and
used by other programmers, saving them the effort of re-invention.

We have borrowed numerous routines from and found much inspiration
in the Software Tools libraries. This means less work to do. It encourages a
consistency of style amongst software from different programmers. For
instance, there is little noticeable difference in style between programs
written in Ratfor by us in Melbourne and programs contributed by
members of the Software Tools Users Group in the U.S.A. We benefit from
what they’ve done and hopefully can in time contribute something back.

The appearance of a program is important too. A program put together
with careful attention to consistency of style — elegant, economical, lucid,
tidy and aesthetically pleasing to look at — reassures the reader of the overall
integrity of the work.

When you see carelessness in a program, you suspect that the same
carelessness will manifest in more subtle ways also.

Although is is possible to write in a confused way in any language, Ratfor
has at least allowed us to write software in a cleaner and simpler way than is
possible in Fortran.

Another principle which has become clear to us is keep it simple.

Almost without fail, when we’ve tripped ourselves up in a project, its
because we’ve written code in a complicated or fancy way (perhaps thinking
at the time how clever we were). Yet, revisit it in a year’s time, and that
complexity becomes unintelligible. You often find yourself going back over
work, revising, rewriting, trying to cut it down to the simplest expression of
the problem.

During the course of programming, repetitive code often emerges and we
have learned to recognize this and invent macros to encapsulate it.

USING PREPROCESSORS - A CASE STUDY
Consider a for loop to scan a linked list. In raw Ratfor it might be

for (ptr = start; ptr I= O; ptr = array (ptr))
body of loop

This construct was turning up so often that we invented a macro for it

AlongList (start, ptr)
body of loop

This has the advantages of less keystrokes and a clearer expression of
what’s happening. In this way you make building blocks from building
blocks and so can build larger programs faster.

It has become apparent that data structures and run-time dynamic
memory allocation are essential for list processing, interactive graphics,
table-driven user interfaces and generalized database libraries. The macro
processor has become an essential tool in extending the Ratfor language to
provide these facilities. These methods are topics in themselves and will be
explained in later issues.

In mid-1982, we received a tape from the Software Tools Users Group in
the U.S.A. This group has developed and enhanced most of the programs
presented in the original book by Kernighan and Plauger — generally
moving them closer to the equivalent tool in the Unix operating system.

Future Directions

Ratfor is an enormous improvement on Fortran, but still lacks many
facilities for engineering programming.

There are many changes and improvements we would /ike to make to
Ratfor if we were given free reign to do so.

We have resisted making any changes (other than internal “speed-up”
changes), for we believe that if we are to write programs which we describe
as being “Ratfor” (or “Rat77”) programs, then they must be compatible
with the original Ratfor and Macro processors.

It seems that perhaps the time is ripe for a new Fortran preprocessor,
based on Ratfor, but incorporating many more of the good ideas from C, and
perhaps Pascal and Ada or whatever. Programming for real-world
technical/engineering applications cries out for standardized language
shorthands, facilities and building blocks more than the often simplistic
“systems’’ programs.

10

USING PREPROCESSORS - A CASE STUDY

We strongly feel that the appropriate way to change Ratfor is not to

change it at all — leave it as it was originally designed and known and if
necessary invent a mew preprocessor with a new name, so there is no
confusion about different versions of Ratfor.

From our experience we feel that areas of study and development which

would greatly benefit the technical programming community are

1

Software tools to translate between commonly used programming
languages. After all, most programmers can convert a program from
Ratfor to C, or from Fortran to Pascal, and the rules are mostly (if not
completely?) mechanical. Surely this sort of mindless drudgery is what
the computer is for? In Software Tools Communications Number 9, the
idea is raised of developing from Ratfor a preprocessor/language which
would be translatable into other commonly used languages. This idea
has practical merit.

Language extensions or libaries to provide shorthands for: character
handling, formatted i/o that is predictable and sensible, dynamic
memory allocation and list manipulation. Most of these facilities
merely require consolidation into a standard from their current
prototype form.

Language extensions or libraries to implement the needs of the
technical/engineering programmer. These include interactive user
interfaces, graphics library interfaces and a portable database system.
Technical programming has specialized needs and could benefit from
specialized code generation tools just as Cobol has benefitted from the
so-called “fourth generation” languages.

This may sound overwhelming, but the experience with the Software

Tools package so far indicates that by properly following principles of care
and discipline in how we work, it can be achieved with a minimum of
mindless, repetitive effort.

11

Ratfor and Fortran 77
Character Usage

Paul Howson

THE MOST SIGNIFICANT new feature of Fortran 77 (for program
portability) is the character data type.

Earlier Fortran standards provided no machine-independent method of
handling character data — in fact if you adhered strictly to the Fortran IV
standard, you couldn’t handle character data. There were data types for all
kinds of numerical applications — integer, real, double precision, complex
and logical — but there was no character data type as such. Characters were
tolerated by assuming them to be typically 8-bit bytes and, by having a
knowledge of the word length of your particular computer, you could resort
to mysterious techniques to pack 8-bit characters into 16 or 32-bit integers
(or reals).

However, this was all very dependent on the exact architecture of the
computer. Some computers had 36-bit or 60-bit words and it was common
practice to pack six or ten 6-bit characters into these. This style of handling
characters produced programs which were locked-in to a particular machine
architecture.

In Software Tools, Kernighan and Plauger adopted a machine
independent way of handling characters in Ratfor by treating them as small
integers. (A technique also used in Tektronix’s Plot10 library.) Character
strings were treated as one-dimensional arrays of integers with one character
per array element.

They in fact said: “since Fortran IV doesn’t support a character data type,
let us use a data type that it does support to represent characters” — and
Fortran has always supported the integer data type well.

Fortran IV did not officially recognize quoted strings, except perhaps in
format statements. Even though most compilers would allow quoted
strings (as for example arguments to subroutines), there was no machine
independent way of manipulating the string components once inside the
subroutine.

12

RATFOR AND FORTRAN 77 CHARACTER USAGE

Not having any quoted string facility is crippling and in “Software
Tools”, Kernighan and Plauger requested a special i/o0 primitive called
remark to put out to the standard error output a quoted string passed toit as
an argument. They ensured that all their quoted strings were terminated
with a period, so that remark could know when it had reached the end of the
string. This technique worked for the frequent occasions when some
message or other was to be sent to the user’s terminal, but in order to send
literal strings to an arbitrary device or file (via putlin), it was necessary to
declare the string as an integer array and initiallize it, a slot at a time, using
data statements. Hence to put out the string “fred” to file unit fd, one had to
write

character fred (5)

data fred (1) /LETF/
data fred (2) /LETE/
data fred (3) /LETR/
data fred (4) /LETD/
data fred (5) /EOS/

call putlin (fred, fd)
whereas it would have been nice to be able to write simply
call putlin ("fred"”, fd)

Clearly, any program which required a lot of literal strings soon became
very full of these long declarations. The Ratfor preprocessor is a case in point
— it contains quite large block data areas to declare all the Ratfor keywords it
needs to know.

To alleviate this, later versions of Ratfor provided the string statement
which translated a line of the form

string fred "fred”

into those longhand array declaration and data statements required by
Fortran.

With the coming of the Fortran 77 standard, Fortran responded to the
glaring neglect of characters in the original standard by at last providing a
character data type. No longer did you have to resort to any trickery to
handle characters in Fortran programs. The new standard at last did
something predictable with quoted strings by defining them to be scalar
constants of type character.

13

RATFOR AND FORTRAN 77 CHARACTER USAGE

And how did this change in Fortran affect Ratfor? One possible approach
is to use the Fortran 77 character data type in place of Ratfor’s “characters
as integers”.

By making Ratfor’s “character” data type translate into the Fortran 77
character data type, quoted strings suddenly cease to be anything special.
You can thus freely use quoted strings as arguments to subroutines (such as
putlin or file handling routines). For example

fd = open ("myfile”, READ)
or

call putlin ("a line of text” // NEWLINE, STDOUT)

However, despite this bonus of gaining quoted strings, there are
disadvantages.

Consider firstly how Fortran 77 indicates the end of a character string.
Fortran 77 character string variables are fixed length strings — they must
have a declared length and storage is allocated for them at compile time.
(This in'itself is no different from using characters as integers.) In practice
however you usually want to have strings whose contents vary in length
during program execution.

This can be implemented by using a special string ending character which
we may term symbollically EOS (“End-Of-String”). This is typically an
element of the character set not normally used. Ratfor uses such a sentinel
character for terminating strings — typically a small negative integer. In
Fortran 77 style Ratfor, all characters must be elements of the machine’s
character set, so a non-printing character may be used as the end-of-string
convention.

The problem is that such an end-of-string convention is not recognized
by Fortran 77 which prefers to pad strings out to their declared length with
blanks. A user implemented EOS convention invalidates many of the nice
facilities that Fortran 77 provides for character handling.

For instance, Fortran 77 automatically passes into a subroutine the
address and length of a character data type used as a calling argument. This
length can be recovered inside the subroutine using the len intrinsic.

There arises a complicating ambiguity however. If the string being passed
is a variable, containing a terminating EOS character, then its length is up to
but not including the EOS character — even though this may be less than
the declared ength of the variable given by the len intrinsic. But if the string
is passed as a quoted string in the calling routine (and hence containing no
EOS character), then the length must be determined using the len intrinsic.

14

So the way to do an end-of-string test (when scanning a string) is not clear
cut. Sometimes there’s an EOS character, sometimes there’s not. (The C
language shows the preferred behaviour by encoding quoted strings with an
EOS character at the end.) Complications like this are something we can
afford to do without!

Consider now some of Fortran 77’s intrinsic character functions.

If you declare

character name*20
and then use Fortran 77’s convenient character assignment statement
name = "fred”

you get in name the four characters “fred” followed by 16 blanks. As far as
Fortran 77 is concerned, those 16 blanks are valid parts of name. But what if
you wanted to store the letters “fred”, followed by just one blank? Well,
there is no way in the standard to do this without the blank being “lost” in
the blank padding.

We would need instead to write

name = "fred"” // EOS

to get the desired result of a string (possibly containing blanks) with a
recognizable terminator.
Character concatenation falls down most of the time also. For instance

character name1*20, name2*20, name*20

namel = "fred” // EOS
name2 = "smith” // EOS
name = namel // name2

won’t give us name containing “fredsmith”. In fact because Fortran 77
does not understand an end-of-string character convention, name will
contain only “fred” followed by EOS followed by 15 blanks.

To achieve the desired concatenation we must write

name3 = name1 (1:length (name1l)) //
name2 (1:length (name?2)) // EOS

where length is a function which returns the length of a string up to but not
including the EOS. You will no doubt agree that the clarity hoped for by

15

RATFOR AND FORTRAN 77 CHARACTER USAGE

providing an intrinsic concatenation function in Fortran 77 is somewhat lost
through these undesirable but necessary subterfuges. In a similar way,
the intrinsic function index is thwarted in its effectiveness.

In programs which do any serious character handling, Fortran 77 ’s blank
padding scheme is so imprecise as to be un-usable. A user-implemented
EOS convention is the only way out and alas we pay the price of forfeiting
Fortran 77 ’s character intrinsics.

The second shortcoming is that in Fortran 77 strings are seen as scalars,
different from wvectors of characters — and the manipulation of strings
requires a special notation. The reason, it seems, is that if you want you can
have vectors (or arrays) of szrings. In our experience such a facility is not
worth the complexity of notation which it introduces. Yes, it is nice
sometimes to be able to specify substrings with the colon notation, but most
references to character variables are of two types: references to the entire
string or references to one single character within the string. It is clumsy to
have to write string(i:i) to get at the i-th character. It would have been far
better to allow string (i) for this ubiquitous case. (Of course, if you want the
single subscript notation, you can use character vectors, but these are not of
the same type as quoted strings — which are character scalars.)

Despite having used Ratfor with Fortran 77 characters for over two years
in large technical applications programs where the ability to use quoted
strings in context was valuable, we have come to the conclusion that the best
long-term strategy is to use the traditional Ratfor technique of representing
characters as integers, for the following reasons:

1 It is compatible with the large existing base of Software Tools
programs and libraries written in Ratfor.

2 Tt avoids the headaches associated with the widely differing ways that
Fortran 77 characters have been implemented on different machines.
The methods of passing a Fortran 77 character argument withits length
to a procedure are many and varied and seem to trip one up constantly
when porting software between machines. Integers are traditional,
simple, less restrictive and reliable.

3 Ttis closer notationally to the flavour of other languages such as Cand
Pascal.

4 Since the Fortran 77 character design, with its lack of EOS convention,
makes the Fortran 77 character intrinsics rather unusable, little is lost
by not having them. Preprocessor enhancements could restore the
desired functionality in character handling.

16

